Space is not just the final frontier. It’s the citizen-science frontier. Thanks to rapid advances in technology, it’s now possible for citizen scientists to build high-quality space-science hardware with off-the-shelf components.

Interest in citizen science and participatory exploration has exploded in recent years. New technologies are making it easier for private citizens  to become involved in the scientific process. More and more, the professional scientific community is recognizing the importance of contributions made by dedicated amateurs. Citizen scientists are discovering exoplanets and dinosaurs, monitoring climate and endangered species, and helping to map the human genome.

The development of low-cost reusable suborbital spacecraft will be the next great enabler, allowing citizens to participate in space exploration and space science.

Citizens in Space, a project of the United States Rocket Academy, is riding this new wave of citizen science citizen space exploration.

XCOR Lynx with Atsa Suborbital Observatory space telescope

For the first phase of our project, we have acquired an initial contract for 10 suborbital spaceflights with one of the new space transportation companies — XCOR Aerospace. This represents, to the best of our knowledge, the largest single bulk purchase of suborbital flights to date. We will be making payload space on these flights available to citizen scientists and to professional researchers who play by our open-source rules. We expect to fly up to 100 small experiments in our initial flight campaign. For information on submitting payloads, see our Call for Experiments.

Citizens in Space will also select and train 10 citizen astronauts to fly as payload operators. We have three astronaut candidates already in training. We’ll be recruiting seven more over the next 12 to 24 months.

For more information on our program, click here.

Northrop Grumman Experimental Spaceplane concept

Northrop Grumman has revealed its conceptual design for DARPA’s Experimental Spaceplane (XS-1), which is being developed in partnership with Virgin Galactic.

Northrop Grumman also revealed that Scaled Composites (a Northrop Grumman subsidiary) will play a key role in the 13-month, $3.9 million phase-one effort.

Scaled Composites of Mojave will lead spaceplane fabrication and assembly, while Virgin Galactic heads the transition to commercial spaceplane operations. (One of DARPA’s goals is to transfer spaceplane technology to a military or commercial operator).

The reusable spaceplane is intended to achieve aircraft-like operations, providing a breakthrough in launch costs. With an expendable upper stage, it will place up to 3,000 pounds into low Earth orbit, enabling new generations of innovative, lower-cost payloads.

A key program goal is to fly ten times in ten days, with minimal infrastructure and ground crew. DARPA believes that reusable aircraft-like operations could reduce military and commercial launch costs by a factor of ten.

Northrop Grumman says the design will be built around operability and affordability. Aircraft-like features include clean-pad launch using a transporter/erector/launcher, minimal infrastructure and ground crew; highly autonomous flight operations; and horizontal landing and recovery on standard runways.

Leave A Comment, Written by Astro1 on August 19th, 2014 , Military Space, Scaled Composites, Virgin Galactic

cowboy, horse, and spaceship

The wait is almost over for XCOR and Midland, Texas. This week, renovation work officially began on the building which will become the new XCOR headquarters at Midland International Airport. The work opens the way for the beginning of commercial human spaceflight in Texas.

Work on the XCOR headquarters building began with a ceremonial wall-breaking on Friday. The building is expected to be ready for initial occupancy by April, although some renovation work will continue until next summer.

Midland International Airport expects to receive a spaceport license from the FAA’s Office of Commercial Space Transportation by September 15. Recently, it appeared that the license might be in jeopardy due to environmental concerns surrounding the lesser prairie chicken, which was recently added to the Threatened Species list. Those concerns have been resolved by an agreement between Midland Airport and the US Fish and Wildlife Service, which will monitor the local prairie-chicken population during the first few flights of the Lynx spacecraft.

XCOR hopes to begin test flights of the Lynx spacecraft this winter. If everything remains on schedule, Lynx Mark I flight tests will likely begin at the Mojave Air and Space Port in California, then finish up in Texas.

The renovation work officially began with a wall-breaking ceremony on Friday. A number of XCOR and Midland officials participated in the ceremony, including Andrew Nelson, chief operating officer of XCOR Aerospace; Midland Mayor Jerry Morales; Robert Rendall, chairman of the Midland Development Corporation; Pam Welch, executive director of the Midland Development Corporation; and John Love III, chairman of the Midland Spaceport Development Board. Also present was Chuck Sturgeon of the N.C. Sturgeon construction firm, which is performing the renovation work.

The renovated building will provide enough hangar space to house a wide-bodied jetliner, which will someday serve as the first stage for XCOR’s three-stage orbital launch system, the Lynx Mark V. The need for a large hangar to house the Lynx Mark V was one factor which motivated XCOR’s decision to move to Midland.

Future Lynx spacecraft will be developed in Texas, but XCOR plans to build an assembly facility for production vehicles in Florida. XCOR wants to separate production work from research and development for efficiency reasons.

Once XCOR completes its move to Texas, Midland will be the site for future Lynx test flights. According to this week’s press release, XCOR also plans to conduct commercial Lynx flights from Midland (a fact not previously revealed). XCOR plans to conduct commercial flights from other locations as well, including Kennedy Space Center in Florida and Mojave Air and Space Port in California. XCOR also markets Lynx vehicles to commercial customers on a wet-lease basis.

Leave A Comment, Written by Astro1 on August 16th, 2014 , XCOR Aerospace

SpaceX Falcon 9 Launch

SpaceX CEO Elon Musk has confirmed that the firm plans to build “the world’s first commercial launch complex designed specifically for orbital missions” in South Texas.

The launch site, which could be operational as soon as 2015, will eventually support up to two Falcon 9 Heavy and 10 Falcon 9 launches per year.

Texas Governor Rick Perry announced that the state will offer $2.3 million from the Texas Enterprise Fund as well as $13 million from the Spaceport Trust Fund to bring the launch facility to Cameron County.

“Texas has been on the forefront of our nation’s space exploration efforts for decades,” Governor Perry said. “It is fitting that SpaceX has chosen our state as they expand the frontiers of commercial space flight. In addition to growing the aerospace industry in Texas, SpaceX’s facility will provide myriad opportunities for STEM education in South Texas, and inspire a new generation of Texas engineers and innovators.”

Brownsville Mayor Tony Martinez called the announcement “A historical moment for the greater Brownsville region and the State of Texas… the culmination of a dream and a vision that began more than three years ago.”

SpaceX CEO Elon Musk said, “SpaceX is excited to expand our work in Texas with the world’s first commercial launch complex designed specifically for orbital missions. In addition to creating hundreds of high tech jobs for the Texas workforce, this site will inspire students, expand the supplier base and attract tourists to the south Texas area.”

1 Comment, Written by Astro1 on August 4th, 2014 , SpaceX

Earth's atmosphere as seen from space

The High Altitude Astrobiology Challenge will be featured at the 2014 meeting of the 100 Year Starship Symposium, which takes place in Houston on 18-21 September 2014.

“Searching for Extraterrestrial Life at the Edge of Space” is one of two featured papers that will be presented during the Life Sciences in Space Exploration Track chaired by NASA astronaut Dr. Yvonne Cagle. The paper will be presented by Edward Wright, founder of the United States Rocket Academy and project manager for Citizens in Space.

The High Altitude Astrobiology Challenge seeks to develop a reliable means of collecting microorganisms from the extreme upper atmosphere (altitudes of 100,000 feet and above). Such organisms have been collected by high-altitude balloons, but balloons lack the reliability and controllability of reusable suborbital spacecraft now under development.

The other featured paper will be “When Biology Meets Exobiology,” by David Almandsmith and Dr. Carmen Nevarez of Khotso Consulting.

Symposium registration is now open.

2 Comments, Written by Astro1 on August 2nd, 2014 , Astrobiology, Citizens in Space

James Cameron’s Deep Sea Challenge 3D documentary opens in theaters on Friday, 8 August.

The documentary tells the story of Cameron’s voyage to the bottom of the Mariana Trench, the deepest spot on Earth.

One little-known fact about Cameron’s Deep Challenge project is that two filmmakers died in a helicopter accident during the production — another indicator of the hazards of working at sea. This is comparable to the three astronauts who died during the Apollo program.

Rumor says that James Cameron is one of two citizen explorers who have agreed to pay Space Adventures $150 million apiece for a circumlunar flight on a Russian Soyuz, becoming the first humans to visit the Moon since Apollo 17.

Space Adventures lunar expedition vehicle fires engines on its way to the Moon

Leave A Comment, Written by Astro1 on August 2nd, 2014 , Citizen Exploration, Oceanography

The US Air Force Operationally Responsive Space Office plans to demonstrate a low-cost smallsat capable of providing space-situational-awareness coverage for Geosynchronous Earth Orbit.

The Lincoln Laboratory at Massachusetts Institute of Technology will design and build the SensorSat satellite, which is expected to launch in 2017. SensorSat will be placed into a low Earth orbit from which it will continuously scan the GEO belt.

SensorSat will help reduce risks for cutting-edge technologies expected to make their way into the Space-Based Space Surveillance (SBSS) follow-on satellites, which will start development in 2016.

Leave A Comment, Written by Astro1 on August 1st, 2014 , Military Space

Sierra Nevada Dream Chaser composite structure

The first structural component of Sierra Nevada’s lifting-body spaceplane, Dream Chaser, was revealed to the press today.

At a joint press conference, Sierra Nevada and Lockheed Martin unveiled the first component of Dream Chaser’s composite airframe. Unlike the previous flight-test article, which Sierra Nevada built for atmospheric approach and landing tests, this airframe will actually go into space. The first orbital test flight is currently scheduled for November 2016 on top of an Atlas V rocket.

Read the rest of this entry »

1 Comment, Written by Astro1 on August 1st, 2014 , Sierra Nevada

Boeing released this video to promote its CST-100 capsule.

4 Comments, Written by Astro1 on July 31st, 2014 , Boeing

The Commercial Spaceflight Federation has announced Eric Stallmer as it’s new president. Stallmer will join the Commmercial Spaceflight Federation in September, replacing Capt. Michael Lopez-Alegria (USN-ret.).

Stallmer comes to the Federation from Analytical Graphics Inc., where he served as vice-president of government relations. Prior to joining AGI, he served as president of the Space Transportation Association.

Commercial Spaceflight Federation chair,an Stuart Witt said, “We are very pleased to have Eric as a part of CSF leadership. He has long been an advocate for commercial spaceflight, and will now be in a position to make an even greater impact on the industry at the helm of the Commercial Spaceflight Federation.”

Leave A Comment, Written by Astro1 on July 31st, 2014 , Commercial Space (General)

Sierra Nevada Dream Chaser commercial lifting-body spacecraft landing

Sierra Nevada continues to make progress on its Dream Chaser spaceplane.

On 10 July, Sierra Nevada completed acquisition of Orbital Technologies Corporation (Orbitec), which has been developing life-support and thermal management systems for Dream Chaser. Orbitec is also expected to play a key role in development of Dream Chaser propulsion.

Orbitec has developed a new engine technology called the VCCW (“vortex combustion cold-wall”) thrust chamber, which can be applied to hybrid or liquid-propellant rocket engines. There has been some speculation that Sierra Nevada might use this new technology to improve the performance of the Dream Chaser’s hybrid rocket motor. However, Charles Lurio of The Lurio Report suggests that Sierra Nevada plans to abandon the hybrid motor in favor of a liquid-propellant (nitrous oxide/propane) rocket engine, which would be developed by Orbitec using the VCCW chamber. The advantages of this engine would include better performance, more consistent thrust, easier thrust-vector control, and better reusability.

On 23 July, Sierra Nevada announced that it has signed a memorandum of understanding with the Japanese Aerospace Exploration Agency (JAXA). Sierra Nevada will work with JAXA on potential applications of Japanese technologies and the development of mission concepts for Dream Chaser. Sierra Nevada and JAXA will also explore the possibility of launching and landing Dream Chaser in Japan.

Sierra Nevada previously signed similar agreements with the European Space Agency and the German Aerospace Center.

Sierra Nevada touts Dream Chaser as “the only lifting-body, low-g reentry spacecraft with the capability to land on commercial runways, anywhere in the world.” Dream Chaser is being marketed as a “multi-mission space utility vehicle” able to “retrieve, repair, replace, assemble or deploy items in space” as well as servicing the International Space Station.

[Update: Sierra Nevada has announced the completion of the first Dream Chaser structural component by subcontractor Lockheed Martin.]

Leave A Comment, Written by Astro1 on July 30th, 2014 , Sierra Nevada

Doug Shane, president, The Spaceship Company

The Spaceship Company announced today that Doug Shane has been named as president.

Read the rest of this entry »

Leave A Comment, Written by Astro1 on July 30th, 2014 , Virgin Galactic

Russian Soyuz rocket rollout

“This deal is looking worse and worse all time.” Those words were famously spoken by Lando Calrissian in Star Wars Episode V (The Empire Strikes Back), but they could also be applied to NASA’s Commercial Crew program.

NASA sold the Commercial Crew program to Congress with the promise that the expenditure would end US dependence on the Russian Soyuz capsule and launcher. But according to NASA’s deputy space-station program manager Dan Hartman, that won’t happen. This week, Hartman told the NASA Advisory Council that some US astronauts will continue to ride on Soyuz vehicles as long as ISS is operational.

Soyuz serves as both transportation system and “lifeboat” for ISS astronauts, and NASA expects any new crew vehicle will do the same. NASA wants some astronauts to continue to ride on Soyuz and some Russian cosmonauts to ride on US vehicles, so it can continue to operate the station with a mixed crew even if one vehicle has to depart due to an emergency. “It doesn’t make much sense for three Russians to leave and expect the four Americans onboard to operate the Russian segment and vice versa,” Hartman said.

This revelation represents just the latest in a long string of broken promises from the Commercial Crew program.

Read the rest of this entry »

20 Comments, Written by Astro1 on July 29th, 2014 , Commercial Space (General), Space Policy and Management

SpaceX has released a statement on the results of their latest booster-recovery experiment. SpaceX reports that “following last week’s successful launch of six ORBCOMM satellites, the Falcon 9 rocket’s first stage reentered Earth’s atmosphere and soft landed in the Atlantic Ocean.”

According to SpaceX, “This test confirms that the Falcon 9 booster is able consistently to reenter from space at hypersonic velocity, restart main engines twice, deploy landing legs and touch down at near zero velocity.”

The booster tipped over after touchdown (as expected), causing the structure to rupture. Based on the result of this test, SpaceX says it is now “highly confident of being able to land successfully on a floating launch pad or back at the launch site and refly the rocket with no required refurbishment.”

The next recovery test won’t occur for a while. The next two launches are for geostationary satellites with high delta-v requirements. These missions do not allow enough residual propellent for booster recovery. (In the long term, SpaceX plans to switch these missions to the Falcon Heavy.)

The next attempt at water landing will be on flight 13 of Falcon 9 (an ISS resupply mission). If that goes well, SpaceX will attempt to land on a solid surface on flights 14 and 15 (an ORBCOM satellite launch and another ISS resupply run).

Leave A Comment, Written by Astro1 on July 23rd, 2014 , SpaceX

NASA Technology Mission Directorate Vision for In-Space Manufacturing

The National Research Council has released a report, commissioned by NASA and the US Air Force, on 3D Printing in Space.

Although fairly positive about the long-term value of 3D printing in space, the study throws some cold water on its near-term prospects.

“Many of the claims made in the popular press about this technology have been exaggerated,” said Maj. Gen. Robert Latiff (USAF-ret.), chairman of the committee that wrote the report.

The report says that 3D printing could contribute to space missions by enabling on-orbit manufacturing of replacement parts and reducing logistics, but the specific benefits and scope of the technology’s use remain undetermined.

Read the rest of this entry »

3 Comments, Written by Astro1 on July 21st, 2014 , Innovation

Boeing/DARPA Experimental SpacePlane (XS-1) concept

Following DARPA’s announcement of three Experimental SpacePlane (XS-1) teams, the Boeing Company released an illustration of its XS-1 design concept.

“Our design would allow the autonomous booster to carry the second stage and payload to high altitude and deploy them into space,” said Will Hampton, Boeing XS-1 program manager. “The booster would then return to Earth, where it could be quickly prepared for the next flight by applying operation and maintenance principles similar to modern aircraft. Drawing on our other innovative technologies, Boeing intends to provide a concept that uses efficient, streamlined ground infrastructure and improves the turnaround time to relaunch this spacecraft for subsequent missions.”

Boeing and its subcontractor Blue Origin will receive $4 million for the XS-1 Phase I study. DARPA plans to hold a Phase II competition next year for the follow-on production order to build the vehicle and conduct demonstration flights.

Steve Johnston, director of Boeing’s Phantom Works Advanced Space Exploration division, said that “Developing a vehicle that launches small payloads more affordably is a priority for future US Defense Department operations.”

Leave A Comment, Written by Astro1 on July 15th, 2014 , Blue Origin, Boeing, Military Space

DARPA Experimental SpacePlane-1 (XS-1) launch

The Defense Advanced Research Projects Agency has announced the selection of three teams to conduct Phase One design studies for the agency’s Experimental SpacePlane 1 (XS-1).

DARPA has selected Boeing (working with Blue Origin), Masten Space Systems (working with XCOR Aerospace), and Northrop Grumman Corporation (working with Virgin Galactic) to design the reusable experimental spaceplane, which is expected to fly ten times in ten days, fly to Mach 10+ at least once, and launch a 3,000-5,000 pound payload to orbit.

DARPA Experimental SpacePlane-1 (XS-1) staging

Program manager Jess Sponable said that DARPA “chose performers who could prudently integrate existing and up-and-coming technologies and operations, while making XS-1 as reliable, easy-to-use and cost-effective as possible. We’re eager to see how their initial designs envision making spaceflight commonplace—with all the potential military, civilian and commercial benefits that capability would provide.”

According to a DARPA press release, the XS-1 program “aims to develop a fully-reusable unmanned vehicle that would provide aircraft-like access to space and deploy small satellites to orbit using expendable upper stages. XS-1 seeks to deploy small satellites faster and more affordably, and develop technology for next-generation hypersonic vehicles.

“XS-1 envisions that a reusable first stage would fly to hypersonic speeds at a suborbital altitude. At that point, one or more expendable upper stages would separate and deploy a satellite into Low Earth Orbit (LEO). The reusable first stage would then return to earth, land and be prepared for the next flight. Modular components, durable thermal protection systems and automatic launch, flight and recovery systems should significantly reduce logistical needs, enabling rapid turnaround between flights.”

In addition to creating vehicle designs, the three teams will identify and conduct critical risk reduction of core component technologies and processes and develop a technology maturation plan leading to fabrication and flight-test.

DARPA expects the teams to “explore alternative technical approaches from the perspectives of feasibility, performance, system design and development cost and operational cost. They must also assess potential suitability for near-term transition opportunities to military, civil, and commercial users. These opportunities include both launching small payloads per the program goals as well as others, such as supporting future hypersonic testing and a future space-access aircraft.”

DARPA did not announce the size of the contracts, but previous statements place the awards at about $3 million each. (Boeing has just announced that its award is $4 million.)

Technology developed in the XS-1 program could transition into future fully reusable orbital systems, such as XCOR’s Lynx Mark V (the successor to the Lynx suborbital spacecraft) or Blue Origin’s VTVL system. DARPA has not specified a launch or landing mode, but it is anticipated that XS-1 concepts will include both vertical and horizontal takeoff and landing systems.

2 Comments, Written by Astro1 on July 15th, 2014 , Blue Origin, Boeing, Masten Space Systems, Military Space, XCOR Aerospace

Virgin Galactic SpaceShip Two first powered flight test

Parabolic Arc reports that Virgin Galactic’s launch license is being held up by a technical glitch in regulatory law, which prevents the company from having an active experimental permit and launch license at the same time.

Virgin Galactic has been testing SpaceShip Two under an FAA experimental permit, but the permit will no longer be useable once the launch license is issued. That presents a problem for Virgin, which expects experimental flight testing to continue for some time. As a result, Virgin Galactic has asked the FAA to place its launch-license application on hold. Without such a request, the FAA would be required to issue a launch license or deny the application within 180 days of application.

Virgin Galactic’s launch-license application has been on hold since January, according to Parabolic Arc.

The Suborbital and Orbital Advancement and Regulatory Streamlining (SOARS) Act, introduced by Rep. Kevin McCarthy (R-CA, who represents the district containing the Mojave Air and Space Port) and Rep. Bill Posey (R-FL), would fix thus technical problem. If the SOARS Act is not passed, Virgin Galactic will ask the FAA to resume processing of its launch-license application once flight testing is completed.

Leave A Comment, Written by Astro1 on July 12th, 2014 , Virgin Galactic

Astronauts George Zamka (left) and Kenneth Ham (right)

Space News reports that Bigelow Aerospace has hired two former NASA astronauts, Captain Kenneth Ham (USN) and Colonel George Zamka (USMC-ret.). The hi rings are said to represent the start of a commercial astronaut corps for the space stations Bigelow plans to launch beginning in 2017.

Capt. Ham is a former naval aviator with 6,000 flight hours in more than 40 different aircraft, more than 300 carrier landings, and 612 hours in space. He flew two Space Shuttle missions to ISS, as pilot of Discovery on STS-124 in June, 2008 and commander of Atlantis on STS-132 in May, 2010.

Capt. Ham holds an MS in aeronautical engineering from the Naval Postgraduate School. He currently serves as chairman of the Department of Aerospace Engineering at the United States Naval Academy in Annapolis, Maryland.

Col. Zamka has logged more than 5,000 flight hours in more than 30 different aircraft and 692 hours in space on two Shuttle flights. Zamka flew to ISS as pilot of Discovery on STS-120 in October, 2007 and commander of Endeavour on STS-130 in February, 2010.

Col. Zamka left NASA in March 2013 to become Deputy Associate Administrator for Commercial Space Transportation at the Federal Aviation Administration. Bigelow says that Zamka will remain in DC to provide a company interface with the US government as well as foreign customers.

Leave A Comment, Written by Astro1 on July 11th, 2014 , Bigelow Aerospace

US Capitol building

Two new bills before Congress seek to boost the commercial space industry.

The SOARS Act (HR 3038) is meant to stimulate suborbital and orbital human spaceflight, while the ASTEROIDS Act (HR 5063) focuses on deep space.

SOARS stands for Suborbital and Orbital Advancement and Regulatory Streamlining. The SOARS Act was introduced on 2 August 2013 by Rep. Kevin McCarthy (R-CA) and Rep. Bill Posey (R-FL), but it received little attention until December when Rep. McCarthy spoke about it during a meeting of the House Subcommitte on Space and Aeronautics.

McCarthy represents the district that includes Mojave Air and Space Port, while Posey’s district includes Cape Canaveral.

Posey is also sponsoring the ASTEROIDS Act, which stands for American Space Technology for Exploring Resource Opportunities in Deep Space. The bill was introduced this week by Posey and Rep. Derek Kilmer (D-WA).

Read the rest of this entry »

The following experiments may inspire the creativity of citizen scientists who want to fly experiments in space. Performed aboard the International Space Station, they could easily be replicated aboard a suborbital flight. (We would like to remind everyone that our Call for Experiments is still open.)

In the first video, International Space Station science officer Don Petit uses an inexpensive speaker to demonstrate the effects of acoustical energy on water in a microgravity environment.

A variation on this experiment uses a different type of fluid, which does not behave in a classical “Newtonian” manner. In the following video, Don Petit uses a cornstarch mixture as an example of a non-Newtonian fluid.

Leave A Comment, Written by Astro1 on July 11th, 2014 , Microgravity Tags:

Austin-based Firefly Space Systems apparently intends to follow the SpaceX path of evolving its expendable launcher into a reusable system. According to this promotional video, “In the future, additional cost savings will be gained as Firefly’s launchers have been designed with reusability in mind.”

Leave A Comment, Written by Astro1 on July 7th, 2014 , Firefly Space Systems Tags:

Firefly small commercial launch vehicle

FireFly Space Systems, a startup space-launch company based in Austin, Texas, has officially announced its first product — a small-satellite launcher called FireFly Alpha, designed to place 400 kilograms (880 pounds) into Low Earth Orbit.

Firefly Space Systems, which also maintains a facility in Hawthorne, California, was founded by veterans of the emerging commercial space industry. CEO Thomas Markusic formerly served as vice-president of propulsion at Virgin Galactic, senior Systems engineer at Blue Origin, and principle propulsion engineer and test-site director at SpaceX.

Firefly Space Systems, which completed a seed-funding round in January, seeks to “lower the prohibitively high costs of small satellite launches to Low Earth and Sun Synchronous Orbits with the goal of revolutionizing broadband data delivery and earth observation missions.” Firefly will offer small-satellite customers dedicated launches for $8-9 million, according to Markusic.

Firefly Alpha will be a two-stage, single-core rocket. (The artist’s concept shown above is presumably a follow-on version, with two strap-on boosters). In time, Firefly Space Systems intends to evolve its launchers into reusable systems. (See Firefly Space Systems To Pursue Reusable Launcher.)

Read the rest of this entry »

1 Comment, Written by Astro1 on July 5th, 2014 , Firefly Space Systems Tags:

XCOR Lynx suborbital spacecraft

XCOR Aerospace has acquired Space Expedition Corporation, the previously independent Dutch company which served as general sales agent for the XCOR Lynx and XCOR’s first wet-lease customer. The new sales entity, XCOR Space Expeditions, will continue to focus on sales, commercial partnerships, and participant training on a global level. XCOR Space Expeditions will also serve as a sales channel for future wet-lease customers.

According to a press statement, the acquisition signals XCOR’s commitment to being “the most active space flight company in the world,” with the highest frequency of flights and fastest learning curve.

“For the past two years, SXC has provided XCOR Aerospace with an expanding roster of new customers and commercial partners,” XCOR chief executive officer Jeff Greason said. “We look forward to making the most of their expertise and insights with customers and commercial partners. With their sales and marketing engine now a part of the XCOR brand, we deepen the connection between customers and Lynx.”

“As a founder of SXC, and through my background in e-Business and Formula One, I understand that exceptional engineering and design are vital for performance and the overall customer experience,” said Michiel Mol, a new XCOR board member. “XCOR Aerospace is the best I’ve seen in spacecraft and rocket engine design. XCOR Space Expeditions will provide direct connection to the XCOR brand and more up-to-date information about Lynx for individual ticket holders, wet-lease customers,and commercial partners.”

4 Comments, Written by Astro1 on June 30th, 2014 , XCOR Aerospace

Scaled Composites SpaceShip One / White Knight

Ten years ago today, on 21 June 2004, Mike Melvill flew SpaceShip One to an altitude of 100.124 kilometers, becoming the first pilot to qualify for the FAA’s commercial astronaut wings. The flight was a milestone for Scaled Composites in its quest to win the $10-million Ansari X-Prize, which was finally won on 4 October 2004.

At the time, many people assumed that suborbital spaceflight would soon be commonplace. Today, however, some view the event with ambiguity, if not disappointment, as commercial suborbital flights have not yet begun.

When viewed in systems-engineering terms, the delay in the start of the commercial operations should not be considered surprising, though, or cause for great concern. The late G. Harry Stine pointed out that human beings tend to view progress in linear terms. Our brains are hard-wired that way. But, in fact, technological progress and economic growth (like biological growth and most other natural phenomena) are not linear. They follow exponential growth curves.

As a result, Stine pointed out, human beings almost always overestimate what can be accomplished in the near term and underestimate what can be accomplished in the long term.

What we are seeing today, with delays in suborbital spaceflight, confirms the first half of Stine’s prediction. There is every reason to believe that suborbital spaceflight will confirm the second half of his prediction, too, in the years to confirm — as did computing, communications, aviation, and many other industries.

Leave A Comment, Written by Astro1 on June 21st, 2014 , Scaled Composites