Stratolaunch aircraft and Sierra Nevada Dream Chaser lifting body

NASA said “no” to Sierra Nevada’s Dream Chaser lifting body, but Sierra Nevada Corporation is not giving up the fight to build a vehicle that can carry American astronauts into orbit and return to land on an airport runway.

Sierra Nevada has announced a new partnership with Paul Allen’s Stratolaunch Systems, which is currently developing the world’s largest aircraft to serve as the first stage for orbital launch systems. As part of this joint venture, Sierra Nevada is designing a scaled-down (75%) version of Dream Chaser that can carry three people and be launched from the Stratolaunch aircraft. The vehicle will also be capably of flying unscrewed space missions (similar to the US Air Force’s X-37 spaceplane), as well as “light cargo transportation or suborbital point-to-point transportation.”

One possible customer for suborbital point-to-point transportation might be the US military. At the beginning of the 21st Century, the United States Marine Corps studied a concept called Small Unit Space Transport and Insertion (SUSTAIN), which would use suborbital vehicles for rapid delivery of special forces to hot spots around the world. In 2002, a USMC “universal need statement” said, in part, “The Marine Corps needs a capability to transport small mission-tailored units through space from any point on the globe to a contingency at any other point on the globe within minutes…. The War on Terrorism highlights the need for flexible, rapid response options to contingencies around the world at their earliest stages.

Sierra Nevada is also continuing to market the full-size Dream Chaser. At the 65th International Astronautical Congress in Toronto on 30 September, the company announced the Dream Chaser Global Project, offering international customers a turn-key spaceflight capability including vehicle, astronaut training, and mission support.

NASA’s Commercial Crew program rejected Dream Chaser in favor of two capsules, Boeing’s CST-100 and SpaceX’s Dragon V2, in a decision announced on 16 September.

Boeing won out over Sierra Nevada even though its bid was $900 million higher and proposal-scoring rules weighted cost as the primary criterion: equal to the other two criteria (mission suitability and past performance) combined.

Some observers have suggested that NASA may have made the decision based on “cost realism,” effectively rewarding Boeing for submitting the highest-cost proposal. Rumors say that Boeing, unlike SpaceX and Sierra Nevada, has invested very little of its own money in previous phases of the Commercial Crew program, relying almost entirely on NASA funding. Boeing has also made less progress to date, producing mostly paper, while SpaceX and Sierra Nevada have been building actual hardware.

Sierra Nevada has filed a formal protest, which will be evaluated by the Government Accounting Office. As a result, NASA Commercial Crew contracts are on hold until the GAO completes its investigation, which may not occur until January. Sierra Nevada is not betting the farm on a positive outcome of that protest, however.

Sierra Nevada’s loss does not really come as a surprise, however. NASA telegraphed its view of Dream Chaser in the last phase of Commercial Crew contract awards, in August 2012, when Sierra Nevada was reduced to half funding. Arguably, the decision was made two years ago and NASA was simply going through the motions this time around.

The “capsule mentality” has dominated NASA’s thinking since the days of Project Mercury. NASA’s Commercial Crew program has rejected space planes not once, but twice. Orbital Sciences Corporation proposed a similar vehicle, Prometheus, which didn’t survive the cut in 2012 even though it was based on work OSC previously did for NASA under the Orbital Space Plane program. (NASA ultimately rejected the wing design for Orbital Space Plane in favor of an Apollo-like capsule, which later became the Crew Exploration Vehicle, now known as Orion.)

Sierra Nevada Dream Chaser / Orbital Sciences Prometheus

2 Comments, Written by Astro1 on October 8th, 2014 , Sierra Nevada, Stratolaunch

The European Space Agency is preparing for the first suborbital test flight of its Intermediate eXperimental Vehicle (IXV) reentry demonstrator, which may pave the way for future development of a European orbital spaceplane. Ironically, the test comes at a time when NASA has once again turned its back on spaceplane technology in favor of sixties-style space capsules.

[youtube=http://www.youtube.com/watch?v=S1HKXTx2rSc&w=700]

IXV is a lifting-body vehicle, about five meters (15 feet) long and weighing almost two tons, which will test technologies for autonomous controlled reentry. IXV is scheduled for launch on a Vega rocket from the European spaceport in French Guiana in mid-November.

IXV will explore the coupling of inertial measurement units with GPS data and the combination of flaps and thrusters for control in hypersonic flight. It will also test the performance of thermal-protection materials and designs, including thermal expansion, seals, and gaps.

ESA hopes that data gathered by IXV will provide a better understanding of aerothermodynamic reentry phenomena governed by complex real-gas laws that are difficult to predict, reducing design margins required in future vehicles.

During the test flight, IXV will reach a maximum altitude of 450 kilometers (280 miles). On reentry, it will reach a speed of 7.5 km/s (over 16,000 mph) at 120 km (75 mi). At the completion of the mission, the vehicle will descend by parachute and be recovered in the Pacific Ocean after traveling more than halfway around the world.

The next step after IXV could be the Programme for Reusable In-orbit Demonstrator in Europe (PRIDE) mission. PRIDE would perform a complete end-to-end orbital mission and return to land on a runway.

ESA sees numerous applications for autonomous atmospheric reentry vehicles, including servicing orbital facilities such as the International Space Station, refueling and disposal of unmanned satellites, microgravity experimentation, high-altitude atmospheric research and Earth observation, and sample return from Mars or the asteroids.

European Space Agency PRIDE mission

ESA is also collaborating with Sierra Nevada to develop hardware and mission concepts for the Dream Chaser orbital spaceplane.

Sierra Nevada is marketing Dream Chaser as a space utility vehicle that could serve as a platform for technology demonstrations, construction and repair missions, and crewed or un-crewed scientific missions.

ESA is currently working with Sierra Nevada to identify applications of European hardware, software, and know-how, as well as studying a possible industrial consortium to use Dream Chaser for European missions. Following this evaluation and planning phase, which will continue throughout 2014, ESA and Sierra Nevada hope to sign a long-term agreement leading to flight operations.

3 Comments, Written by Astro1 on October 8th, 2014 , Commercial Space (General)

XCOR Lynx spacecraft under construction

XCOR Aerospace is reporting progress on its path toward commercial space flight. Some of that progress is shown in new photos, which XCOR has publicly released for the first time.

XCOR recently completed integration of the Lynx spacecraft fuselage and cockpit, as shown above. XCOR is currently in the process of bonding the fuselage, cockpit, and wing strakes together. The company is also integrating subassemblies, such as the landing gear, and engine components (shown below).

At the same time, XCOR continues to test the Lynx propulsion system, using a non-flight fuselage for cold flow and hot firing.

“Teams are working in parallel to finish Lynx,” XCOR President Andrew Nelson said. “We are hiring shop staff and engineers to prepare for the final stretch leading up to test flights. I’m proud of what the team has accomplished this year. The excitement in the hangar is palpable.”

“The team at XCOR has been working a long time to reach this goal,” said XCOR CEO Jeff Greason. “We always knew there would be a day when we could see a spacecraft forming in our hangar. Today is that day.”

XCOR technician Ray Fitting prepares LOX pump for fitting on Lynx truss

1 Comment, Written by Astro1 on October 7th, 2014 , XCOR Aerospace

Space Adventures circumlunar mission

Space Adventures will launch its first circumlunar mission in 2018, according to the Russian news service Interfax. Political factors could disrupt the trip, however.

The mission would use a modified Soyuz capsule, which would rendezvous and dock with a Russian upper stage. The upper stage would then be used to propel the Soyuz onto a circumlunar trajectory, in a manner similar to what was once planned for Lunar Gemini flights.

Before heading to the Moon, the Soyuz crew (Russian cosmonaut pilot and two Space Adventures customers) would spend about 10 days at the International Space Station. This would allow the crew to adapt to the weightless environment, so any problems with space sickness would be past before the circumlunar leg begins.

Space Adventures has been marketing the lunar flight for several years now. Filling the first seat was apparently no problem, but selling the second seat caused some delay. In June 2014, Space Adventures announced that it had sold the second seat and the project was ready to begin. (Seats reportedly sell for $150 million.)

Reaction from Russia has been mixed, however. The Russian space company Energia expressed some enthusiasm for the project. A few weeks later, the Russian Space Agency (RSA or Roscosmos) repudiated the plan.

It’s possible that Space Adventures and Energia could carry out the mission without participation from the Russian Space Agency, but the Russian government has recently been asserting increased control over the Russian space industry. The government currently owns 38% of Energia stock but is seeking majority control. In August, Energia president Vitaly Lopota was suspended from his post. Lapota has been under criminal investigation for abuse of office, a charge that is widely seen as politically motivated.

The Russian government has announced ambitious space plans which include lunar missions, but Russia has the habit of announcing grandiose plans which are never funded. Even if lunar missions do occur, it remains to be seen if Russia has any interest in cooperating with US commercial space companies.

1 Comment, Written by Astro1 on October 6th, 2014 , Space Adventures

F-22 Raptor during aerial refueling

The F-22 Raptor, the air-dominance fighter that has been in development since 1981, just flew its first combat mission.

There are reports that it may fly a second combat mission.

Sadly, that is not a joke. The F-22 procurement process has produced something truly remarkable — the first fighter that’s too expensive to risk in combat. Unfortunately, it will not be the last.

The F-35 Lightning II, which was touted as a low-cost alternative to the F-22, has grown into the most expensive procurement program in history. Designed to replace the F-16 Fighting Falcon, the F/A-18 Hornet, the A-6 Intruder, and the A/V-8 Harrier (among others), the sophisticated F-35 is plagued with technical problems and has been called “the worst fighter in history.”

It’s a cliche to say that the military procurement system is suffering from hardening of the arteries. Unfortunately, there doesn’t seem to any way back. The natural evolution of bureaucratic systems is toward more overhead and less flexibility.

This entrenched bureaucracy will be a challenge for DARPA’s Experimental Spaceplane program (XS-1). DARPA is the advanced-research arm of the Defense Department. Its goal is to transfer the technology to customers in the military or private sector. If DARPA transfers the spaceplane technology directly to the Air Force, the final result will almost certainly go the way of the F-22 and F-35. If the Experimental Spaceplane technology is to live up to cost-saving promise, DARPA will need a good commercialization plan.

All indications are that DARPA knows this. The DARPA project managers running XS-1 are among the best in the Federal government. If anyone can solve the problem, they can. Due to its unique mission, DARPA is not subject to many of the rules that constrain other parts of DoD. That is not to say that DARPA has a completely free hand, however. It still operates within the framework of DoD and the Federal government. It may be that this is a problem no one can solve.

Northrop Grumman Experimental Spaceplane concept

1 Comment, Written by Astro1 on September 23rd, 2014 , Military Space

cowboy, horse, and spaceship

The Federal Aviation Administration’s Officer of Commercial Space Transportation has granted final approval for Midland International Airport’s launch-site license.

Midland International Airport is the first airport with commercial service to be licensed as a spaceport. From this point on, it will be known as Midland International Air & Space Port.

The license approval clears the way for XCOR Aerospace to begin its move to Midland from its current location in Mojave, California. Midland International Airport has already begun renovating a hangar facility for XCOR Aerospace, which will be ready for initial occupancy by April 2015.

Midland Development Corporation chairman Robert Rendall said, “We see the private space sector becoming a vital part of our future economy. The spaceport is co-located with our commercial airport which will allow Midland to attract additional aerospace companies to the community.”

Director of airports Marv Esterly said, “The proximity of the airport to the spaceport allows us to take advantage of existing infrastructure, lowers cost to operators, and offers us a competitive advantage over operations at remote locations.” The spaceport business model is to start small and expand as needed while leveraging existing facilities to keep costs low. Over the next few years, Midland will work to adapt the current spaceport concept to accommodate other types of launch vehicles and the needs of aerospace companies as they arise.

1 Comment, Written by Astro1 on September 17th, 2014 , Spaceports, XCOR Aerospace

BE-4

The United Launch Alliance (ULA) and Blue Origin have announced an agreement to jointly develop the BE-4, a new American rocket engine to replace the Russian RD-180 currently used on ULA’s Atlas rocket.

The agreement calls for a four-year development process with full-scale testing in 2016 and first flight in 2019. The BE-4 will be available for use by both companies on their next-generation launch systems.

Read the rest of this entry »

3 Comments, Written by Astro1 on September 17th, 2014 , Blue Origin

US Air Force Academy FalconSAT-7 space telescope CubeSat tested aboard microgravity aircraft "G Force One"

The market for microgravity aircraft flights appears to be in flux, with one company grounded, at least temporarily, while another prepares to enter the field.

Read the rest of this entry »

2 Comments, Written by Astro1 on September 17th, 2014 , Space Adventures, Swiss Space Systems

Launch America

After months of public speculation, NASA has finally revealed its selected ISS crew contractors.

Not surprisingly, the big winner in the competition is Boeing. The aerospace giant will receive a contract worth up to $4.2 billion. The total value includes vehicle development, certification, and operational flights to the International Space Station.

SpaceX will receive up to $2.6 billion to meet the same goals. It may seem strange that SpaceX is receiving less money for the same amount of work, but the contract payments are based on each company’s own bid.

NASA hopes that both companies will be able to deliver astronauts to the International Space Station by 2017. Meeting that date will depend on adequate funding from Congress, however. In the past, Congress has urged NASA to downselect to a single contractor, and there may be additional pressure on NASA in future budgets.

Before operational flights begin, each company will conduct at least one demonstration flight to ISS with a NASA astronaut onboard. The contracts are said to include six operational flights to the International Space Station (presumably split evenly between the two companies). The actual number of flights flown (and the actual value of the contracts) will depend on the needs of ISS, however.

The apparent loser in the competition is Sierra Nevada, which will receive no funding to continue development of its Dream Chaser lifting body. That development is unsurprising. Sierra Nevada was reduced to half funding in the previous round of CCDev contracts, signaling NASA’s direction.

In the long run, however, Sierra Nevada might turn out to be the winner. Sierra Nevada has been much more aggressive than Boeing or SpaceX in lining up customers outside of NASA. It has signed memoranda with the European Space Agency, the German Aerospace Center (DLR), and the Japanese space agency (JAXA) which could lead to joint development and operations. By contrast, SpaceX reportedly turned down an offer from Dennis Tito to supply a capsule for the Inspiration Mars mission, for fear of alienating NASA, forcing Tito to turn to NASA’s Orion instead. Sierra Nevada is now free to pursue foreign and commercial customers with fear of contract reprisals.

NASA has invited the losing company to continue participating in the Commercial Crew program, without funding, and share its data with NASA. Whether Sierra Nevada takes NASA up on this offer or not remains to be seen. In any case, Sierra Nevada will not be obliged to comply with all of NASA’s certification rules, processes, and procedures, however. SpaceX project manager Garrett Reisman has spoken of “one thousand separate requirements” which NASA has imposed on contractors. Without this red tape, Sierra Nevada will be free to move more quickly, assuming it can find funding. In the end, it may be that Sierra Nevada wins for losing.

Leave A Comment, Written by Astro1 on September 16th, 2014 , Boeing, SpaceX

The FAA Office of Commercial Space Transportation (FAA-AST) has released version 1.0 of its Recommended Practices for Human Space Flight Occupant Safety.

The recommendations cover the safety of flight crew and spaceflight participants and include the design, manufacturing, and operations of suborbital and orbital launch and reentry vehicles. The recommendations assume that any orbital vehicle will stay in orbit for a maximum of 2 weeks and return to Earth in under 24 hours if necessary. Orbital rendezvous and docking, flights longer than 2 weeks, EVA, and flights beyond Earth orbit may be addressed in future versions.

To develop the recommendations FAA-AST reviewed existing standards, including those of NASA, the European Space Agency, and the International Association for the Advancement of Space Safety. The FAA was guided primarily by NASA requirements for the Commercial Crew Program.

The goal is to ensure that occupant safety is considered throughout the lifecycle of a spaceflight system and that occupants are not exposed to avoidable risks. The document does not aim to establish a single level of risk for commercial human spaceflight. The FAA believes that such a standard might inadvertently limit innovation. Given the variety of commercial spaceflight activities that are likely to take place in the future, with differing destinations, purposes, and architectures, the FAA believes that differing levels of risk acceptance may be appropriate.

The document establishes level of care for occupants, for flight crew performing safety-critical operations, and for emergency situations.

The document does not include any medical criteria that would limit who should fly in space as a spaceflight participant. Medical consultation is recommended to inform spaceflight participants of risks and ensure they will not be a danger to other occupants, but FAA believes spaceflight participants should be free to make their own decisions about individual risk.

The current document focuses on avoiding injuries or fatalities, rather than long-term health effects. For that reason, exposure to ionizing-radiation is not included.

The complete recommendations can be downloaded here.

Leave A Comment, Written by Astro1 on September 16th, 2014 , Citizen Exploration, Space Medicine and Safety

Northrop Grumman Experimental Spaceplane concept

Northrop Grumman has revealed its conceptual design for DARPA’s Experimental Spaceplane (XS-1), which is being developed in partnership with Virgin Galactic.

Northrop Grumman also revealed that Scaled Composites (a Northrop Grumman subsidiary) will play a key role in the 13-month, $3.9 million phase-one effort.

Scaled Composites of Mojave will lead spaceplane fabrication and assembly, while Virgin Galactic heads the transition to commercial spaceplane operations. (One of DARPA’s goals is to transfer spaceplane technology to a military or commercial operator).

The reusable spaceplane is intended to achieve aircraft-like operations, providing a breakthrough in launch costs. With an expendable upper stage, it will place up to 3,000 pounds into low Earth orbit, enabling new generations of innovative, lower-cost payloads.

A key program goal is to fly ten times in ten days, with minimal infrastructure and ground crew. DARPA believes that reusable aircraft-like operations could reduce military and commercial launch costs by a factor of ten.

Northrop Grumman says the design will be built around operability and affordability. Aircraft-like features include clean-pad launch using a transporter/erector/launcher, minimal infrastructure and ground crew; highly autonomous flight operations; and horizontal landing and recovery on standard runways.

Leave A Comment, Written by Astro1 on August 19th, 2014 , Military Space, Scaled Composites, Virgin Galactic

cowboy, horse, and spaceship

The wait is almost over for XCOR and Midland, Texas. This week, renovation work officially began on the building which will become the new XCOR headquarters at Midland International Airport. The work opens the way for the beginning of commercial human spaceflight in Texas.

Work on the XCOR headquarters building began with a ceremonial wall-breaking on Friday. The building is expected to be ready for initial occupancy by April, although some renovation work will continue until next summer.

Midland International Airport expects to receive a spaceport license from the FAA’s Office of Commercial Space Transportation by September 15. Recently, it appeared that the license might be in jeopardy due to environmental concerns surrounding the lesser prairie chicken, which was recently added to the Threatened Species list. Those concerns have been resolved by an agreement between Midland Airport and the US Fish and Wildlife Service, which will monitor the local prairie-chicken population during the first few flights of the Lynx spacecraft.

XCOR hopes to begin test flights of the Lynx spacecraft this winter. If everything remains on schedule, Lynx Mark I flight tests will likely begin at the Mojave Air and Space Port in California, then finish up in Texas.

The renovation work officially began with a wall-breaking ceremony on Friday. A number of XCOR and Midland officials participated in the ceremony, including Andrew Nelson, chief operating officer of XCOR Aerospace; Midland Mayor Jerry Morales; Robert Rendall, chairman of the Midland Development Corporation; Pam Welch, executive director of the Midland Development Corporation; and John Love III, chairman of the Midland Spaceport Development Board. Also present was Chuck Sturgeon of the N.C. Sturgeon construction firm, which is performing the renovation work.

The renovated building will provide enough hangar space to house a wide-bodied jetliner, which will someday serve as the first stage for XCOR’s three-stage orbital launch system, the Lynx Mark V. The need for a large hangar to house the Lynx Mark V was one factor which motivated XCOR’s decision to move to Midland.

Future Lynx spacecraft will be developed in Texas, but XCOR plans to build an assembly facility for production vehicles in Florida. XCOR wants to separate production work from research and development for efficiency reasons.

Once XCOR completes its move to Texas, Midland will be the site for future Lynx test flights. According to this week’s press release, XCOR also plans to conduct commercial Lynx flights from Midland (a fact not previously revealed). XCOR plans to conduct commercial flights from other locations as well, including Kennedy Space Center in Florida and Mojave Air and Space Port in California. XCOR also markets Lynx vehicles to commercial customers on a wet-lease basis.

Leave A Comment, Written by Astro1 on August 16th, 2014 , XCOR Aerospace

SpaceX Falcon 9 Launch

SpaceX CEO Elon Musk has confirmed that the firm plans to build “the world’s first commercial launch complex designed specifically for orbital missions” in South Texas.

The launch site, which could be operational as soon as 2015, will eventually support up to two Falcon 9 Heavy and 10 Falcon 9 launches per year.

Texas Governor Rick Perry announced that the state will offer $2.3 million from the Texas Enterprise Fund as well as $13 million from the Spaceport Trust Fund to bring the launch facility to Cameron County.

“Texas has been on the forefront of our nation’s space exploration efforts for decades,” Governor Perry said. “It is fitting that SpaceX has chosen our state as they expand the frontiers of commercial space flight. In addition to growing the aerospace industry in Texas, SpaceX’s facility will provide myriad opportunities for STEM education in South Texas, and inspire a new generation of Texas engineers and innovators.”

Brownsville Mayor Tony Martinez called the announcement “A historical moment for the greater Brownsville region and the State of Texas… the culmination of a dream and a vision that began more than three years ago.”

SpaceX CEO Elon Musk said, “SpaceX is excited to expand our work in Texas with the world’s first commercial launch complex designed specifically for orbital missions. In addition to creating hundreds of high tech jobs for the Texas workforce, this site will inspire students, expand the supplier base and attract tourists to the south Texas area.”

1 Comment, Written by Astro1 on August 4th, 2014 , SpaceX

Earth's atmosphere as seen from space

The High Altitude Astrobiology Challenge will be featured at the 2014 meeting of the 100 Year Starship Symposium, which takes place in Houston on 18-21 September 2014.

“Searching for Extraterrestrial Life at the Edge of Space” is one of two featured papers that will be presented during the Life Sciences in Space Exploration Track chaired by NASA astronaut Dr. Yvonne Cagle. The paper will be presented by Edward Wright, founder of the United States Rocket Academy and project manager for Citizens in Space.

The High Altitude Astrobiology Challenge seeks to develop a reliable means of collecting microorganisms from the extreme upper atmosphere (altitudes of 100,000 feet and above). Such organisms have been collected by high-altitude balloons, but balloons lack the reliability and controllability of reusable suborbital spacecraft now under development.

The other featured paper will be “When Biology Meets Exobiology,” by David Almandsmith and Dr. Carmen Nevarez of Khotso Consulting.

Symposium registration is now open.

2 Comments, Written by Astro1 on August 2nd, 2014 , Astrobiology, Citizens in Space

James Cameron’s Deep Sea Challenge 3D documentary opens in theaters on Friday, 8 August.

[youtube=http://www.youtube.com/watch?v=-8r_-79SjpA&w=700]

The documentary tells the story of Cameron’s voyage to the bottom of the Mariana Trench, the deepest spot on Earth.

One little-known fact about Cameron’s Deep Challenge project is that two filmmakers died in a helicopter accident during the production — another indicator of the hazards of working at sea. This is comparable to the three astronauts who died during the Apollo program.

Rumor says that James Cameron is one of two citizen explorers who have agreed to pay Space Adventures $150 million apiece for a circumlunar flight on a Russian Soyuz, becoming the first humans to visit the Moon since Apollo 17.

Space Adventures lunar expedition vehicle fires engines on its way to the Moon

Leave A Comment, Written by Astro1 on August 2nd, 2014 , Citizen Exploration, Oceanography

The US Air Force Operationally Responsive Space Office plans to demonstrate a low-cost smallsat capable of providing space-situational-awareness coverage for Geosynchronous Earth Orbit.

The Lincoln Laboratory at Massachusetts Institute of Technology will design and build the SensorSat satellite, which is expected to launch in 2017. SensorSat will be placed into a low Earth orbit from which it will continuously scan the GEO belt.

SensorSat will help reduce risks for cutting-edge technologies expected to make their way into the Space-Based Space Surveillance (SBSS) follow-on satellites, which will start development in 2016.

Leave A Comment, Written by Astro1 on August 1st, 2014 , Military Space

Sierra Nevada Dream Chaser composite structure

The first structural component of Sierra Nevada’s lifting-body spaceplane, Dream Chaser, was revealed to the press today.

At a joint press conference, Sierra Nevada and Lockheed Martin unveiled the first component of Dream Chaser’s composite airframe. Unlike the previous flight-test article, which Sierra Nevada built for atmospheric approach and landing tests, this airframe will actually go into space. The first orbital test flight is currently scheduled for November 2016 on top of an Atlas V rocket.

Read the rest of this entry »

1 Comment, Written by Astro1 on August 1st, 2014 , Sierra Nevada

Boeing released this video to promote its CST-100 capsule.

[youtube=http://www.youtube.com/watch?v=6VYIUi9H3vM&w=700]

4 Comments, Written by Astro1 on July 31st, 2014 , Boeing

The Commercial Spaceflight Federation has announced Eric Stallmer as it’s new president. Stallmer will join the Commmercial Spaceflight Federation in September, replacing Capt. Michael Lopez-Alegria (USN-ret.).

Stallmer comes to the Federation from Analytical Graphics Inc., where he served as vice-president of government relations. Prior to joining AGI, he served as president of the Space Transportation Association.

Commercial Spaceflight Federation chair,an Stuart Witt said, “We are very pleased to have Eric as a part of CSF leadership. He has long been an advocate for commercial spaceflight, and will now be in a position to make an even greater impact on the industry at the helm of the Commercial Spaceflight Federation.”

Leave A Comment, Written by Astro1 on July 31st, 2014 , Commercial Space (General)

Sierra Nevada Dream Chaser commercial lifting-body spacecraft landing

Sierra Nevada continues to make progress on its Dream Chaser spaceplane.

On 10 July, Sierra Nevada completed acquisition of Orbital Technologies Corporation (Orbitec), which has been developing life-support and thermal management systems for Dream Chaser. Orbitec is also expected to play a key role in development of Dream Chaser propulsion.

Orbitec has developed a new engine technology called the VCCW (“vortex combustion cold-wall”) thrust chamber, which can be applied to hybrid or liquid-propellant rocket engines. There has been some speculation that Sierra Nevada might use this new technology to improve the performance of the Dream Chaser’s hybrid rocket motor. However, Charles Lurio of The Lurio Report suggests that Sierra Nevada plans to abandon the hybrid motor in favor of a liquid-propellant (nitrous oxide/propane) rocket engine, which would be developed by Orbitec using the VCCW chamber. The advantages of this engine would include better performance, more consistent thrust, easier thrust-vector control, and better reusability.

On 23 July, Sierra Nevada announced that it has signed a memorandum of understanding with the Japanese Aerospace Exploration Agency (JAXA). Sierra Nevada will work with JAXA on potential applications of Japanese technologies and the development of mission concepts for Dream Chaser. Sierra Nevada and JAXA will also explore the possibility of launching and landing Dream Chaser in Japan.

Sierra Nevada previously signed similar agreements with the European Space Agency and the German Aerospace Center.

Sierra Nevada touts Dream Chaser as “the only lifting-body, low-g reentry spacecraft with the capability to land on commercial runways, anywhere in the world.” Dream Chaser is being marketed as a “multi-mission space utility vehicle” able to “retrieve, repair, replace, assemble or deploy items in space” as well as servicing the International Space Station.

[Update: Sierra Nevada has announced the completion of the first Dream Chaser structural component by subcontractor Lockheed Martin.]

Leave A Comment, Written by Astro1 on July 30th, 2014 , Sierra Nevada

Doug Shane, president, The Spaceship Company

The Spaceship Company announced today that Doug Shane has been named as president.

Read the rest of this entry »

1 Comment, Written by Astro1 on July 30th, 2014 , Virgin Galactic

Russian Soyuz rocket rollout

“This deal is looking worse and worse all time.” Those words were famously spoken by Lando Calrissian in Star Wars Episode V (The Empire Strikes Back), but they could also be applied to NASA’s Commercial Crew program.

NASA sold the Commercial Crew program to Congress with the promise that the expenditure would end US dependence on the Russian Soyuz capsule and launcher. But according to NASA’s deputy space-station program manager Dan Hartman, that won’t happen. This week, Hartman told the NASA Advisory Council that some US astronauts will continue to ride on Soyuz vehicles as long as ISS is operational.

Soyuz serves as both transportation system and “lifeboat” for ISS astronauts, and NASA expects any new crew vehicle will do the same. NASA wants some astronauts to continue to ride on Soyuz and some Russian cosmonauts to ride on US vehicles, so it can continue to operate the station with a mixed crew even if one vehicle has to depart due to an emergency. “It doesn’t make much sense for three Russians to leave and expect the four Americans onboard to operate the Russian segment and vice versa,” Hartman said.

This revelation represents just the latest in a long string of broken promises from the Commercial Crew program.

Read the rest of this entry »

20 Comments, Written by Astro1 on July 29th, 2014 , Commercial Space (General), Space Policy and Management

SpaceX has released a statement on the results of their latest booster-recovery experiment. SpaceX reports that “following last week’s successful launch of six ORBCOMM satellites, the Falcon 9 rocket’s first stage reentered Earth’s atmosphere and soft landed in the Atlantic Ocean.”

According to SpaceX, “This test confirms that the Falcon 9 booster is able consistently to reenter from space at hypersonic velocity, restart main engines twice, deploy landing legs and touch down at near zero velocity.”

[youtube=http://www.youtube.com/watch?v=CQnR5fhCXkQ&w=700]

The booster tipped over after touchdown (as expected), causing the structure to rupture. Based on the result of this test, SpaceX says it is now “highly confident of being able to land successfully on a floating launch pad or back at the launch site and refly the rocket with no required refurbishment.”

The next recovery test won’t occur for a while. The next two launches are for geostationary satellites with high delta-v requirements. These missions do not allow enough residual propellent for booster recovery. (In the long term, SpaceX plans to switch these missions to the Falcon Heavy.)

The next attempt at water landing will be on flight 13 of Falcon 9 (an ISS resupply mission). If that goes well, SpaceX will attempt to land on a solid surface on flights 14 and 15 (an ORBCOM satellite launch and another ISS resupply run).

Leave A Comment, Written by Astro1 on July 23rd, 2014 , SpaceX

NASA Technology Mission Directorate Vision for In-Space Manufacturing

The National Research Council has released a report, commissioned by NASA and the US Air Force, on 3D Printing in Space.

Although fairly positive about the long-term value of 3D printing in space, the study throws some cold water on its near-term prospects.

“Many of the claims made in the popular press about this technology have been exaggerated,” said Maj. Gen. Robert Latiff (USAF-ret.), chairman of the committee that wrote the report.

The report says that 3D printing could contribute to space missions by enabling on-orbit manufacturing of replacement parts and reducing logistics, but the specific benefits and scope of the technology’s use remain undetermined.

Read the rest of this entry »

3 Comments, Written by Astro1 on July 21st, 2014 , Innovation