Boeing recently demonstrated a pilot-in-the-loop simulation of its new CST-100 space capsule.

Captain Chris Ferguson (USN-ret.), who commanded the last-ever Space Shuttle flight,flew the simulation, which included on-orbit attitude and translation maneuvers, docking and backing away from a virtual International Space Station, and a manual re-entry to Earth. Ferguson is now director of Crew and Mission Operations for Boeing’s CST-100 program.

Written by Astro1 on March 28th, 2014 , Boeing

Boeing and Bigelow Aerospace recently conducted a drop test of the CST-100 capsule at Delamar Dry Lake Bed in Nevada.

Boeing is developing the CST-100 primarily to take NASA astronauts to the International Space Station, but Bigelow hopes to use CST-100 to transport astronauts to its own Space Station Alpha, which may be ready as soon as 2015.

Boeing built the US components of the International Space Station. It also inherited the space divisions of McDonnell Douglas and Rockwell International, which built Mercury, Gemini, Apollo, and the Space Shuttle, as well as the X-15. It’s strange to hear politicians and pundits say that CCDev contractors like Boeing have no experience with manned space systems.

Written by Astro1 on September 24th, 2013 , Bigelow Aerospace, Boeing

Boeing CST-100 capsule docks at Bigelow Aerospace space station

Stewart Money at Innerspace has some additional details from the NASA/Bigelow press conference. This part is particularly interesting:

Bigelow announced that the transport price to the station, would be $26.25 million aboard a SpaceX Dragon, or $36.75 million aboard a Boeing CST-100. The 40% price difference is almost certainly due to the much higher cost of the Boeing’s Atlas V launch vehicle, as compared to the SpaceX Falcon 9. The gap could become even more pronounced if Congress ultimately removes the large annual subsidy going to United Launch Alliance in the form of the Launch Capability Contract which is currently on the order of nearly $100 million per flight at current rates.

If this is true, we wonder how Boeing plans to make money. It’s hard to believe that many customers would voluntarily pay $10.5 more for what is essentially the same service.

This might explain why Boeing is reportedly investing very little of its own money in the CST-100. Given a price disadvantage like this, they might not have any customers beyond NASA.

On the other hand, it’s possible Boeing might consider switching the CST-100 to the Falcon 9. Boeing has previously said that CST-100 is booster agnostic. Last year, Boeing said the CST-100 would fly on either the Atlas V or ATK Liberty (the rocket formerly known as Ares I). Liberty is also likely to be a very expensive rocket, besides being vaporware at the moment.

Written by Astro1 on January 18th, 2013 , Bigelow Aerospace, Boeing, SpaceX

Boeing CST-100 capsule and XCOR Lynx spacecraft

Boeing states that it is building its business case for the CST-100 capsule on two flights per year to the International Space Station.

XCOR Aerospace is building its business case for the Lynx spacecraft on the ability to fly four times a day.

Roll those numbers around in your mouth for a while.

Suborbital spaceflight is often dismissed as unimportant (just as the first microcomputers were dismissed as unimportant). It doesn’t have the same numbers – speed, energy, altitude, duration – as orbital spaceflight.

But like the first microcomputers, it will have the numbers that matter.

Written by Astro1 on October 23rd, 2012 , Boeing, XCOR Aerospace

As SpaceX prepares for the first commercial docking with the International Space Station, the race to develop crew and cargo resupply vehicles continues to heat up. Emerging space companies like SpaceX, Blue Origin, and Sierra Nevada are competing against one another and against established companies like Orbital Science and Boeing. Now, competition has reached the point where two divisions of the aerospace giant are competing against one another.

Boeing is hard at work developing the CST-100 capsule under the NASA Crew and Cargo Development (CCDEV) program.

Boeing CST-100 commercial space capsule

Late last year, it was revealed that another Boeing crew and cargo vehicle may be in the works. At the American Institute of Aeronautics and Astronautics’s Space 2011 conference in November, Boeing’s Arthur Grantz revealed that the company is studying a new derivative of the Boeing/USAF X-37B. The new X-37C would be 65-80% larger than the current B version. Launched by an Atlas V rocket, X-37C could carry pressurized or unpressurized cargo or 5-6 astronauts. Grantz is chief engineer in charge of X-37 at the Boeing Space and Intelligence Systems Experimental Systems Group .

One advantage of the winged X-37C would be its gentle 1.5-gee reentry profile. The soft return would benefit astronauts who are deconditioned by long-duration missions in weightlessness as well as those who must be evacuated for medical reasons. Astronauts would normally ride in aircraft-like seats but the design includes provisions for transporting one astronaut on a stretcher. Fragile hardware, such as the results of biological or materials-processing experiments, would  also benefit.

The X-37C seems like a dark horse at the moment, since CST-100 is already in development and receiving funding under CCDEV, but rumors say that NASA is considering extending the life of the International Space Station again, to 2028. If that happens, the chances for new entries in the CCDEV race are likely to improve. X-37 could also carry citizen space explorers to a Bigelow space station and other Low Earth Orbit destinations in the future.

This type of internal competition is a sign of a healthy industry. In the commercial world, a good company is always trying to make its own products obsolete (before an external competitor does it for them).

Boeing/USAF X-37B

X-37 began as a NASA program in the late 1990′s. NASA funded the development of two vehicles. One vehicle, called X-40, was designed for approach-and-landing tests with a CH-47 helicopter used as the drop aircraft. The slightly larger X-37A was designed to go into space but never made it. The program was canceled and X-37A was mothballed for several years until the Defense Advanced Research Projects Agency (DARPA) took it over. X-37A was then used for additional approach-and-landing tests, using Scaled Composite’s White Knight  (originally built to carry SpaceShip One) as the drop aircraft.

Finally, in 2006, the US Air Force decided to proceed with orbital tests of the X-37. It was decided that the original X-37 was not adequate for this purpose, so a new version, called X-37B was constructed. Two X-37B vehicles were built. The first X-37B conducted a 225-day mission in space from April 22 to December 3, 2010. The second X-37B was launched on March 5, 2011. It is expected to remain in orbit for 270 days or longer. Although X-37B is designed to be reusable, neither of the two vehicles has yet been reflows. The Air Force officially designates the X-37B as an Orbital Test Vehicle, or OTV. Various conspiracy theories claim X-37B is everything from a spy satellite to a space-weapons platform, but there’s no evidence to indicate that it is anything more than an experimental test platform as the Air Force states. The low flight rate would sam to preclude an operational role.

Written by Astro1 on March 25th, 2012 , Boeing

Boeing’s Commercial Crew Space Transportation System, including the CST-100 capsule, Atlas V launcher, and ground system successfully completed its Preliminary Design Review on March 12. (Press release here.)

The PDR included representatives from Boeing, NASA, the Federal Aviation Administration and independent consultants. Boeing has scheduled additional tests to be performed in 2012, including a launch abort engine hot fire test series, which was successfully completed on March 9, parachute drop tests in April, a landing air bag test series in May, a forward heat shield jettison test in June, and an attitude control engine hot fire test in June, to gather additional data on key functional elements of the spacecraft design.

The Boeing Commercial Crew Space Transportation System is designed to provide crewed flights to the ISS and a future Bigelow Aerospace orbital space station. The following video shows how the system might support a Bigelow station.